Relationship between BMI, PSA and Histopathological Tumor Grade in a Caucasian Population Affected by Prostate Cancer
Main Article Content
Abstract
The aim of this work is to show the relationship between obesity and aggressivenes of Prostate Cancer. We conducted a retrospective study of 132 men affected by Prostate Cancer underwent radical prostatectomy. Gleason score was abstracted by biopsy specimens and by post-operatory specimens. We evaluated PSA level and Body Mass Index (BMI). The prevalence of Post Operative Gleason Score > 8 among subjects with lowest tertile of PSA was higher in obese (BMI > 30 Kg/m2) (94.4%) vs overweight subjects (BMI 25-29.9 Kg/m2) (19.2%) (p< 0.01); the prevalence of Post Operative Gleason Score >8 among subjects with second tertile of PSA was higher in obese (100%) and overweight (70%) vs normal weight subjects (0%) (p<0.01 and p<0.001 respectively); the prevalence of Post Operative Gleason Score >8 among subjects with third tertile of PSA was higher in obese (100%) and overweight (62%) vs normal weight subjects (0%) (p<0.05 respectively).We believe that changes in the levels of PSA and Gleason Score, observed as a function of class BMI, could be due to separate mechanisms: PSA levels could be influenced by the effect of dilution by increased plasma volume of the subjects obese, while tumor grade could be affected by the hormonal changes induced by adipose tissue.
Downloads
Article Details
Copyright (c) 2014 Gioia A, et al.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing and protecting the author rights is the central aim and core of the publishing business. Peertechz dedicates itself in making it easier for people to share and build upon the work of others while maintaining consistency with the rules of copyright. Peertechz licensing terms are formulated to facilitate reuse of the manuscripts published in journals to take maximum advantage of Open Access publication and for the purpose of disseminating knowledge.
We support 'libre' open access, which defines Open Access in true terms as free of charge online access along with usage rights. The usage rights are granted through the use of specific Creative Commons license.
Peertechz accomplice with- [CC BY 4.0]
Explanation
'CC' stands for Creative Commons license. 'BY' symbolizes that users have provided attribution to the creator that the published manuscripts can be used or shared. This license allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.
Please take in notification that Creative Commons user licenses are non-revocable. We recommend authors to check if their funding body requires a specific license.
With this license, the authors are allowed that after publishing with Peertechz, they can share their research by posting a free draft copy of their article to any repository or website.
'CC BY' license observance:
License Name |
Permission to read and download |
Permission to display in a repository |
Permission to translate |
Commercial uses of manuscript |
CC BY 4.0 |
Yes |
Yes |
Yes |
Yes |
The authors please note that Creative Commons license is focused on making creative works available for discovery and reuse. Creative Commons licenses provide an alternative to standard copyrights, allowing authors to specify ways that their works can be used without having to grant permission for each individual request. Others who want to reserve all of their rights under copyright law should not use CC licenses.
Jemal A, Bray F, Center M (2011) Global cancer statistics. CA Cancer J Clin 61: 69-90.
Barocas DA, Penson DF (2010) Racial variation in the pattern and quality of care for prostate cancer in the USA: mind the gap. BJU Int 106: 322–328.
Saarimäki L, Tammela TL, Määttänen L (2014) Family history in the finnish prostate cancer screening trial. Int J Cancer 1. doi 10.1002/ijc.29243.
Uzun D, Yanar K, Atukeren P (2014) Age-related changes in rat prostate tissue; perspective of protein oxidation. Aging Male 28: 1-6
Wolf AM, Wender RC, Etzioni RB (2010) American Cancer Society Prostate Cancer Advisory Committee: American cancer society guidelines for the early detection of prostate cancer: update. CA Cancer J Clin 60: 70-98.
Lopez Fontana CM, Recalde Rincon GM, Messina Lombino D (2009) Body mass index and diet influence the development of prostate cancer. Act Urol Esp 33: 741-746.
Freedland SJ, Banez LL, Sun LL (2009) Obese men have higher-grade and larger tumors: an analysis of the duke prostate center database. Prostate Cancer Prostatic Dis 12: 259-263.
Isbarn H, Ieldres C, Budans L (2009) Effect of body mass index on hystopathologic parameters: resultz of large European contemporary consecutive open radical prostatectomy series. Urology 73: 615-619.
Ribeiro RJ, Monteiro CP, Cunha VF (2012) Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol Biochem 29: 233-240.
Van Roermund JG, Hinnen KA, Tolman CJ (2011) Periprostatic fat correlates with tumor aggressiveness in prostate cancer patients. BJU Int 107: 1775-1779.
Buschemeyer WC 3rd, Freeland SJ (2007) Obesity and prostate cancer: epidemiology and clinical implications. Eur Urol 52(2) 331-343.
Banez LL, Hamilton RJ, Partin AW (2007) Obesity-related plasma hemodilution and PSA concentration among men with prostate cancer. JAMA 298: 2275-2280.
Kubota Y, Seike K, Maeda S (2011) Relationship between prostate-specific antigen and obesity in prostate cancer screening: analysis of a large cohort in Japan. Int J Urol 18: 72-75.
Grubb RL, III, Balck A, Izmirlian G (2009) Serum prostate-specific antigen hemodilution among obese men undergoing screening in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 18: 748-751.
Wright JL, Lin DW and Stanford JL (2011) The effect demographic and clinical factors on the relationship between BMI and PSA levels. The Prostate 71: 1631-1637.
Presti JC jr (2003) Prostate biopsy: how many cores are enough? Urol Oncol 21: 135-140.
Partin AW, Mangold LA, Lamm DM (2001) Contemporary update of the prostate cancer staging nomograms (PARTIN tables) for the new millennium. Urology 58: 843-848.
Banez LL, Albisinni S, Freeland SJ (2014) The impact of obesity on the predictive accuracy of PSA in men undergoing prostate biopsy. World J Urol 32: 323-328.
De Nunzio C, Trucchi A, Miano R (2009) The number of positive cores for HGPIN on initial biopsy is associated with prostate cancer on second biopsy. J Urol 181: 1069-1074.
Jayachandran J, Banez LL, Aronson WJ (2009) Obesity as a predictor of adverse outcome across black and white race: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) Database. Cancer 115: 5263-5271.
De Nunzio C, Freedland SJ, Miano L (2011) The uncertain relationship between obesity and prostate cancer: An Italian biopsy color analysis. Eur J Surg Oncol 37: 1025-1029.
Fowke JH, Motley SS, Concepcion RS (2012) Obesity, body composition, and prostate cancer. BMC Cancer 12: 23-30.
Thompson JM, Goodman PJ, Tangen CM (2003) The influence of finasteride on the development of prostate cancer. N Engl J Med 349: 215-224.
Pruthi RS, Swords K, Schultz H (2009) The impact of obesity on the diagnosis of prostate cancer using a modern estended biopsy scheme. J Urol 181: 574-577.
Gallina A, Karakiewicz PI, Hutterer GC (2007) Obesity does not predispose to more aggressive prostate cancer either at biopsy or radical prostatectomy in European men. Inter J Cancer 121: 791-795.
Chun FK, Briganti A, Graefen M (2007) Body mass index does not improve the ability to predict biochemical recurrence after radical prostatectomy. Eur J Cancer 43: 375-382.
Prehn RT (1999) On the prevention and therapy of prostate cancer by androgen administration. Cancer Res 59: 4161-4164.
Corona G1, Rastrelli G, Morelli A (2011) Hypogonadism and metabolic syndrome. J Endocrinol Invest. 34: 557-567.
Tirabassi G, Gioia A, Giovannini L (2013)Testosterone and cardiovascular risk. Intern Emerg Med 8 Suppl 1: S65-S69